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Geometrized Dynamics of Multidimensional 
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In the present work we reduce the dynamics of multidimensional cosmological 
models to the geodesics on a pseudo-Riemannian space. The significance of 
Killing vectors and tensors for the integrability problem is discussed. We also 
investigate geometric properties of the geodesics representing the evolution of 
cosmological models. 

1. INTRODUCTION 

Synge (1926) proposed the idea of  geometry of  dynamics in a different 
sense than the usual symplectic geometry. The symplectic structure concerns 
a phase space, whereas in Synge's approach one is interested in the geometry 
of  certain regions of  configuration space. This geometry reflects the intrinsic 
properties of dynamical equations themselves. In the present work we 
develop this idea as far as the dynamics is concerned of  simple multidimen- 
sional cosmological models. This approach pays off with the possibility to 
analyze effectively integrability of  the system considered. As will be shown, 
integrability of  a Hamiltonian system (resulting from a "certain algebraic 
degeneracy") demonstrates itself in symmetries of  a certain space of  
geodesics to which the system can be reduced. Killing vectors of  an isometry 
group of this space determine f i r s t  integrals  linear in momenta, whereas 
Killing tensors lead to first integrals of  higher orders in momenta. 

We shall show that a class of  multidimensional world models, with 
cosmological constant and with the topology of  the total space being the 
product of  maximally symmetric internal and physical spaces, is integrable. 
In our approach the integrability of  the system is equivalent to the 
integrability of  the geodesic equation on the reduced space. We shall 
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demonstrate that the class of classical cosmological models with a scalar 
field (minimally coupled) is also integrable. 

The considered class of dynamical systems (corresponding to the 
above cosmological models) can be described with the help of a generalized 
Liouville surface in pseudo-Euclidean spaces. The Liouville systems consti- 
tute an important class of integrable Hamiltonian system. Since Hamilto- 
nian systems of general relativity are distinguished by having indefinite 
kinetic energy forms, there is a necessity to generalize the classical Liouville 
systems to the relativistic case; we shall call them nonclassical Liouville 
systems. The systems considered in the present work belong to this class. 
Such systems, in close parallel to their classical counterparts, admit first 
integrals of the second order in momenta. We show that this is a conse- 
quence of the fact that the Liouville systems admit Killing tensors. 

In Section 2 we show how to reduce the dynamics to the geometry of 
geodesics on a (pseudo)Riemannian space. In Section 3 we demonstrate 
that the multidimensional cosmology can be reduced to the classical 
cosmology with scalar fields. The significance of Killing vectors and Killing 
tensors for finding additional first integrals (besides the energy integral) 
is discussed in Section 4. In Section 5 we investigate geometric properties 
of the geodesics on nonclassical Liouville spaces and show the integrability 
of corresponding systems. Some conclusions in Section 6 complete our 
work. 

2. THE PRINCIPLE OF MAUPERTUIS-JACOBI-LAGRANGE AS A 
METHOD TO GEOMETRIZE DYNAMICS 

In the following we shall consider dynamical systems with the La- 
grange function of the form 

1 
L(q, (t) = ~ a,j(q)(t'q: - V(q) (1) 

~); = ~ (t) (2) 
a[ 

where 

1 
B(~, 4) = ~ au~'~ "/ (3) 

is a positive-definite function (in general we assume that metric is indefin- 
ite). Since the momenta are given by 

3L 
p, = 3(7---- 7 = a,j(q)(1: (4) 
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then, if we define matrix a ;j such that 

aij(q)a#(q) = fir 

for every q, one has 

Cl j = a Jk(q)p k 

Therefore 

L(p, q) = ~ aij(q)p,pj -- V(q) 

In such a case the Hamiltonian is 

H(p, q) = p/ l  i -  L(p, q) = ~ a ~J(q)pipj + V(q) 

and the Hamiltonian equations are of the form 

OH OH 
Pi  = aql, Op i 

that is, 

lki = - ~  a'~(q) ,P, - -~i V(q) 

c)i= a/J(q)pj 

Since p,. = aik(q)il k, one has 

d k (ts(Oa'k~gtk Di ="~t [aik(q)(lk] = aikiJ "t- \ Oq.~] 

[ 1 Oa . . .  
2 

and therefore 

that is, 

where 

OV 
Oq i 

~ m = _ _ a m i ( ~ ( l s o k  l ""aarS\[ ~ "'" -- -~ am'k--~qi ]a,.ia~tq.lqt- O V-ff-~ am, 
koq / 

1 m~fOatk Oai., ~2i'i" ~-270ask)(Tsgtk--OVami = - -  a ~WST_~ -~ 2 [dq Oqk aq ) vq 

~ V im ~m + r~(q)q~;g = - ~  a 

l ami~Oaik+Oa,s Oask~ 
f'~ - 2 [ Oq" Oq k Oq' J 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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As we can see, the geodesic equation (14) is a consequence of the Hamil ton 
equation. 

It  can be easily checked that along the motion trajectories 

OH 
- -  = 0  ( 1 5 )  
Ot 

and since H(p,  q) = h = const, one has 

H(p,  q) = ~ aiJ(q)pip j + V(q) = h = const (16) 

L(p,  q) = - H(p ,  q) + pit) i (17) 

Therefore along a trajectory, 

L(p,  q) = P,(t' - h (18) 

To find the motion equations, it is enough to extremize the simplified 
action 

I = p~(t ~ dt (19) 
a 

with the Hamiltonian constraint: 

1 
ao(ti(t ~ + V(q) = h = const 

and we obtain 

f tb ~t tb I = pi(t i dt = aij(Ti(t j dt (20) 
Jta a 

Now, we should, in the simplest possible manner,  take into account 
constraint. We have 

aij0'r j = 2[h - V(q)] = 2W (21) 

and with the new parametrization t = t(2) 

.,j } \ at ] = 2 } (22) 

We assume that 

aij{q[t(2)]} dqi dqj  - 1 (23) 
d2 d2 

(which is also the definition of  2), which gives 

d2 
dt = ( 2 W{q[t(2)l } )1/2 (24) 

The choice of  the parameter  ). guarantees that a "particle" is on the 
level surface H(p ,  q) = h. This leads to 
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I = alj[q(t)]Oi(t)ilJ(t) dt = 2 W[q(t)] dt 
a d t a  

= 2 W[q(t)] ~ a2 = (2W[q(2)]) 1/2 d2 (25) 
a a 

where Wq[t(2)] - W[q(2)]. 
By using the definition of the parameter 2 we obtain the action I, 

which is independent of the parametrization of "particle" trajectory C, 

1 = t,~ {2[h - V(q)]aij dq ~ dqJ} m (26) 

In this way the problem of motion is reduced to the extremization of the 
arc length of the curve with the help of the metric 

g? = 2[h - V(q)]aij(q) (27) 

Let us note that in the case of indefinite metrics we should take modulus in 
the above formula, i.e. 

g?  = [2lh - V(q)]aij(q) 
To perform the extremization, we introduce, as usual, a family of curves, 
"numbered" with a parameter u, having the same initial and endpoint. The 
condition for an extremum 

u = 0  

OI[u] = 0  and q ' (2 )=  (2) (28) Ou 
reads 

s  [2{h - V[q,(2)lav[qu(2)]}q;~(2)qJ(2)llt2 d2 L 
a 0 u  

= s l {gij[qu(2)]q~ui(2)qq(2)} -1/2 

t i  ,,j x du {g~j[qu(2)]qu (2)qu(2)} d2 = 0 (29) 

ti q Now, let us compute (~gf19u){gij[qu(2)]qu (2)q~ (4)}. After elementary manip- 
ulations we have 

,i ,j 3-~ {g,j[qu(2)]q,, (2)q u (4) } 
�9 O j 

2 ,,~ q u = - Ig~Jq" (2)-~u + ( ~ )  q''~q'ur~q~gu 

1 i/(~grs'~ . . . .  Oq{~ Pgijqu aq{] 
2t,~q~)q"q"Wl + 2 ~  L "' - -  --gu_l Ogss, =-2g"i[q:i-p'~gip(~q-~qru ~)q'*q'u"] cqqj-~u 

+2~---~[gijq~ i~3q~] -~-u / (30) 
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Hence,  if  we define 

F~r - ,. g'P dq~ Oq~,] 

we finally obta in  

Ou [u = o] 

(31) 

= falb {gu[q(A)]q'~q'J}-~/2{-gu[q"' + F~rq"q"] ~u (U = O) } d2 

~ b (a/B2)[g,yq"(~q//BU)(U = 0)] d2 
+ . {g~/[q(A)]q,iq,/}l/2 ( 32) 

a 

Let us now choose a new pa rame te r  s such tha t  

dq' dq j 
- -  - 1, (sign(h - V) in general) (33) 

g~/ds ds 

The relat ionship between the new pa rame te r  and  the old one is 

a~/t~[s(t)]gl/[s(t)] = 1 (sign(h - V) in general) (34) 

Hence  

ds 
= 2W; W = [h - V[ in general (35) 

In the new paramet r iza t ion  " s "  we have 

[u = 01 = ~--giAq Firq"q'q (u = O) ds 

fs ,b [- "i t~q j 1 L g~jq ~u (u=O) ds=O (36) 
+ o~ 

Since, however ,  for  s = sa and s = sb, (aqi/au) (s = s a or s = sb) = O, one has 

81 ~ '~f  ,,,~. Fi . . . .  OqJ, u } ~ u u [ U = 0 ] = -  a ~gutq -e , ,q q ' J ~ t  = 0 )  d s = 0  (37) 

and consequently (because the above  holds for  any var ia t ion (dq~/du) 
2 i 

d q , dqtdqm = 0  (38) 
+ F,m[q(s)] ds ds 

After  re turning to the previous t ime pa rame te r  t in the mo t ion  equat ions,  
we obta in  

1 k #i .at_ Fikmqkqm ~_. -'W ~ (~k W)q (39) 
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where 
d 1 OW.id 
d s -  4W 3 ~  q ~ (40) 

d 2 1 (OiW)i l id  1 d 2 
ds--- I = 4 W  3 ~ + 4W------ 5 dt--- 5 (41) 

Let us now summarize our results obtained so far: 
1. The dynamics of  a system having the Lagrange function 

L = �89 ai/l"gl j - V(q) with the fixed energy h has been reduced to determin- 
ing the geodesics 

d2q t~_5 + F~k d sdq j dq kds - 0 (42) 

ds 
- d  = 2 W { q [ s ( t ) ] } ,  w = ]h - V(q) I in general. 

where 
1 

F~.,(q) = 2W[O, V6~ + O,,,V6~-OjVaJialm] 

1 u 
+ -~ a"[Oja,., + Omaj, - Ojatm] (43) 

If  aij = 6ij, then a ~j = 6 'j and 

1 
F~.,(q) = 2W[O, V6~ + 0 m V(~ - -  OiV(~lm] (44) 

2. The motion occurs in the subspace Fh of  the phase space F; Fh is 
given by 

l au(q)pgpj + V(q) = h (45) 

{ , } Fh = (p, q): ~ au(q)(h(t j + V(q) = h (46) 

or in the subspace Q of the tangent bundle TJr where J / i s  a configura- 
tion space, Q is given by 

{ ' } Q = (q, q): ~ au(h(tj + V = h (47) 

Q = {(q, 0): a~y(q)@~j = 2 W}, W = [h - V I (48) 

Vector fields normalized in the sense of  the metric g~j = 2 Wa~j belong 
to the subspace Q, 

Q = {(q, Vq): g(Vq, Vq) = 1} for positive definite metrics a 6 (49a) 
and 

Q = {(q, Vq): g(Vq, Vq) = _ 1, 0} for indefinite metrics a U (49b) 
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As we can see, the problem of  motion in such an approach reduces 
itself to that of geodesics in a Riemann space (J[ ,  g), where ~g is the 
configuration space of  the system, and g is a Riemann metric given by (in 
given coordinates) 

g~j(q) = 2 W(q)a~j(q) (50) 

3. A CLASS OF HAMILTONIAN SYSTEMS IN A 
MULTIDIMENSIONAL COSMOLOGY 

When constructing multidimensional cosmological models we start 
with the Einstein-Maxwell action l; 

S - 16~G dDx ( - d e t  ~uv)l/2(/~ - 2.,~) (51) 

where D = 1 + n + ~ is a total dimension of  space-time, n and ~ being 
dimensions of the physical and internal spaces, respectively; /~ and G are 
the cosmological constant and the gravitational constant, respectively. 

In agreement with the Kaluza-Klein  ideology, the metric of the 
D-dimensional space-time is assumed to be of  the form 

,, v 0 
gMN = (52) 

b2gmn 

where #, v = 0, 1 , . . . ,  n; m, n = 1 , . . . ,  ~; and b is only a function of time. 
The metric g,v and the metric of physical space guy are interrelated by 

~ = W2g~ (53) 

where 
2,~ 

W 2 = b( , -  l) 

In the following we shall additionally assume that gmn is a metric of an 
~-dimensional space of constant curvature, i.e., 

Rrnn -'m" ":" gmn ( 5 4 )  
n 

This assumption allows us to consider the action S as resulting from the 
Lagrange function of the form 

L=(_detg~v)~/2[61 1 ~b,~ - 1 1 G 2 ~'~' V(~b) (55) 

where 
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1 1 ~ ( 1  + lnb  
~T/2 

G = (det gin.),/2' dp = -~ -ff~--l)_] 

x = (8rrG) 1/2 

1 ^ [- 2 [ ' n + n - l ' ~ l / 2  ~" exP L- ~t,~--])-) ~]} (56) 

After the dimensional reduction, multidimensional world models are 
equivalent to those of  the classical (1 + 3)-dimensional theory of  gravity 
with minimally coupled scalar fields. We choose a coordinate system such 
that 

g,v = 0 aZ~ij 

where ~q is the metric space of  constant-curvature. After introducing new 
variables, we obtain 

L =  - 12 1 1 _ 1 "2-V(q~)} (58) 

where dot denotes differentiation with respect to t, and ~ = In a. 
Hence we obtain the Hamiltonian for multidimensional world models 

(respectively for classical models with minimally coupled scalar fields) in 
the form 

1 x2 q~2 1 - -  2 r  2 H = - ~ n ( n - l ) ~ 2 + - ~  - ~ R e  ~- + x  V(c~) (59) 

together with the constraint condition H = 0. 
The Hamiltonian flow induces a geodesic flow on pseudo-Riemannian 

space with the metric 

ds 2 = 2 W(d62 - d(2) (60) 

where 

and 

~-= [2n(n - 1)] 1/2~, (o = tr 

~,/2 ~_] (61) 
: 1 

In the next section we shall analyze the global properties of such a 
space. 
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4. KILLING TENSORS AND FIRST INTEGRALS OF MOTION 

As is well known, the geodesic equation on an arbitrary manifold Jr' 
with Killing vector (~i) has linear first integrals ~iui=const ,  where 
ui= dx~/ds is the unit tangent vector to a geodesic. In such a case, the field 
Killing vector satisfies the Killing equation 

~; j  + ~j;i = o (62)  

If  there exist first integrals of second or higher orders, 

U h ...inu i~ . . .  u in = const 

then the totally symmetric field tensor U,.l...in satisfies the Killing tensor 
equation 

U(~...~n;~n § 0 = 0 (63)  

where parentheses indicate total symmetrization (Dolan et al., 1989). 
Therefore, if we know Killing vectors (KVs for short) and Killing tensors 
(KTs) of the reduced pseudo-Riemannian spaces, we are able to construct 
effectively algebraic first integrals of Hamiltonian systems. With the help of 
KVs we obtain first integrals, linear in momenta, whereas KTs give us first 
integrals of higher orders in momenta. 

Sommers (1973) and Geroch (1970) have shown that one can, in the 
simplest and most natural way, present properties of KVs and KTs as 
certain classes of homogeneous polynomials on the phase space, i.e., on the 
cotangent bundle T*(Mn) of a manifold Mn. For any two invariants 
f ,  g ~ T*(M,,) a new invariant can be obtained in the form of the Poisson 
bracket 

a f a g  O f a g  
(f ,  g) = - ( g , f )  (64) ~x" ~p, Op, ~x s 

[T*(M,) is a 2n-dimensional phase space with local coordinates (xi, pj)]. 
Another invariant can be obtained from the Jacobi identity 

(f,  (g, h)) + (g, (h,f))  + (h, (f ,  g)) = 0 (65) 

Invariants which are linear polynomials in momenta Pi remain in a one-to- 
one correspondence with the totally symmetric contravariant tensor field 
on M,.  Therefore, the field vector ~ = ~i(O/tgM) can be identified with 
linear polynomials ~;p~, and the totally symmetric tensor field with polyno- 
mials 

U = U ij ...i,,pq ...Pi,,, n > 2 

Killing vectors on T*(M,,) assume the form 

(X, E) = 0 (66) 
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where the metric tensor on M.  has been replaced by the basic invariant 
E = gi/pip/, i.e., by the kinetic energy of the system (Dolan, 1984). 

If  KVs X I , . . . ,  Xr are linearly independent and form a closed set, one 
obtains a real Lie algebra y of dimension r [the maximal dimension being 
�89 + 1), n = dim Mn]. The Jaeobi identity has the form 

((Xb, X~), E) + (Xb, (Arc, E)) + (X~, (X b, E)) = 0 (67) 

where 

(x~ ,Xc)= r - ~  ) ~xSf,=-[~,~c]p; (68) 
and [~b, ~c] is a Lie bracket of KVs ~b = ~[b) O~ Oxi and ~ = ~ 0  O~ Oxi on 
M. .  If, therefore, (Xb, X~) is linear in momenta, then Pi must be a Killing 
vector, and it must be a linear combination of Xa, i.e., 

(Xb, X~) = -Cg~Xa;  a, b, c = 1 . . . . .  r (69) 

where Cgc = -C~b are constants. 
KTs are defined as arbitrary solutions of the equation (U, E) = 0. The 

Schouten-Nijenhuis bracket of KT fields plays here an analogous role to 
that of the Lie bracket in constructing Lie algebras of KVs. In conse- 
quence, the Lie algebra of KVs extends to the graded algebra of KVs and 
KTs (Xanthopoulos, 1984). The same author has demonstrated that the 
number of irreducible KTs is likely to be very small, and that the number 
of quadratic KTs tends to zero as the valence u increases. 

Now we shall illustrate the significance of KVs and KTs by using them 
to demonstrate the integrability of Liouville dynamical systems. Kinetic 
energy and potential energy for these systems can be expressed in the 
following form: 

1 
r = ~ [u, (q,) + . . .  + u.(q.)] [v, (ql)02 + " "  + v.(q.)02] (70) 

V =  wl(ql)  + " "  + w. (q . )  (71) 
ul(ql)  +"  �9 �9 + u . (q . )  

where H = T + V - h = const is the energy integral. As demonstrated in 
the preceding section, the problem can be reduced to the analysis of the 
Riemannian space with the metric 

ds 2 = (h - V)[vl(q,)  + " "  + v.(q.)][vl(qi)  dq 2 + " "  + v . (q . )  dq 2] (72) 

After introducing new variables 

f [v,.(q,.)] ,/2 dqr = hvi(qi) - w,(qt) = rP, (73) ( t .  
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we must look for KVs and KTs for the following metric: 

ds2 = [~1(01) + " "  + ~n(qn)] [ d ~  + " "  + d ~  z] (74) 

Spaces with this metric are higher-dimensional generalizations of the 
Liouville space. To show the integrability of  the Liouville dynamical 
system, it is enough to integrate the geodesic equation, which gives 

[hUl(ql) - w1 (ql) + 71] -1/2 dqi +__ [hu2(q2) - wz(q2) + ~21-1/2 dq2 = 0 

(75) 
[hUn_ l(qn_ l) - Wn_ l(qn_ l) W Tn_ l]-l/2 dqn_ l 

+_ [hu.(q.) - w.(q . )  +7.]-1/2  dqn = 0 

where 7~ + " " " + ~. = 0. 
In this way we obtain (n/2) relationships 

Ci ~ q- c j  d~ff/ = O (76) 

where Ci are functions of qe. Since the dimension of  the Liouville system is 
here irrelevant, in the following we shall be interested in Liouville surfaces 
with the metric 

ds 2 = [V(v) + U(u)](dv 2 + du 2) (77) 

In this metric geodesics assume the form 

dv du 
[V(v) + a] 1/2 -+ [U(u) - a] 1/2 = 0 (78) 

These solutions are, of  course, special instances of solutions corre- 
sponding to arbitrary dimensions of  the Liouville systems. It can be shown 
that any surface locally isometric to a surface with a rotational symmetry 
is a Liouville surface (Mishchenko et al., 1985). 

One can also prove that for a Liouville system one has 

1 [U 1 (ql) + ' ' "  + Un (q.)] 2(dq,/dt) 2 

�9 hUl(ql) - wl(ql)  + 71 

�89 [Ul (ql) + ' ' "  + u.(q.)] 2(dq./dt) 2 
(79) 

hu.(q . )  - w.(qn) + 7. 

In the case of a Liouville surface this amounts to the existence of the 
first integral quadratic in momenta in the form 

1 V(vll2p~ �89 + V(vll2pz 2 (80) 0 = ~ [U(u) + 
V(v) + a U(u) - a 
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As is easily checked, the Poisson bracket (0,  E) vanishes, 

t3Ut3E a 0 O E  t~0t3E a 0 O E  
(U, E) - ~ (81) 

du dPl ~v ~P2 ?Pl ~3u dP2 0v 

V~ = (U + V)(p~ +p~) (82) 

The integrability of  geodesic equations (in a closed form) is a conse- 
quence of the fact that (0,  E) = 0. The Killing equations for KTs U assume 
the form 

(U, E) = - [ U ,  E ]  q ' ' i k  + tp i l  . . . p i  k + ' 

- - { u U S ( i l ' " i k - - I  Ogikik + , )  O U , 2 . . . , k + , ) } p q  +~ 
~3x~ 2gS(q Ox ~ " �9 "P,k (83) 

where [ . , . ]  denotes the Schouten-Nijenhuis bracket. If  U and V are 
arbitrary KTs, then their Schouten-Nijenhuis bracket is also a KT. For  
totally symmetric contravariant tensor fields of valence u + w - 1, their 
Schouten-Nijenhuis bracket is defined in the following way (Sommers, 
1973; Dolan, 1984): 

t~ Wi~ ...iv + w - l )  t~ Vi , ,  ...i~ + .~ _ l) 
[ V ,  W ]  il' ' 'iv +w - 1  : l)VS(il . . . iv - 1  wWS( i l - . . iw  -1  

8 x "  Ox"  

(84) 

In order to represent (U, V) as a constant linear combination of  KTs 
of valence w + v - 1, one should distinguish reducible and irreducible KTs 
of  any valence. Only irreducible KTs are regarded a s  having a physical 
meaning (an arbitrary totally symmetric tensor need not be irreducible). 
Let the number of irreducible KTs of valence u be r,, and let us assume 
that the most general KT  of  valence u can be constructed as a constant 
linear combination of N,  "basic" KTs. In such a case N,  is a function of  
r , ,  r ,  _ 1 . . . . .  ru _ 2 = r2, rl  = r,  where r 2 includes the metric invariant E and 
r includes TVs. 

In our case r~ = 0, therefore r2 = N2 = 2. Hence 7 does not exist, but 
there exists an extension of  7 to the F. 

Now we shal l  show that the existence of ), is connected with the 
existence of  first integrals, linear in momenta, for a Hamiltonian dynamical 
system (with certain limitations upon their kinetic and potential energy). 
To show this connection it is enough to make use of  the Levy (1878) 
theorem. Let us consider systems, the Lagrangian of which consists of  the 
kinetic energy T(ql . . . . .  q,, q~ . . . . .  qn), which is a quadratic function in 
velocities, and of  the potential energy V(q~  . . . . .  q, ,) ,  which is independent 
of  velocities. In order to admit a first integral linear in velocities (which is 
equivalent to the existence of  Killing fields on the reduced manifold), the 
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system must have a cyclic coordinate or it should be possible to transform 
it (with the help of pointwise transformation) into a system having such a 
coordinate (Whittaker, 1952). This result is known as the L e v y  theorem;  it 
implies that if 

1 
T = ~ aikqiqk ; V = V(ql . . . . .  qn), aik = aik(qx . . . . .  q , )  (85) 

then the system admits the first integral 

Clql +"  " �9 + C .G + C = const (86) 

where C1 . . . . .  Cn, C are only functions of q~ . . . . .  qn. In such a case the 
first integral linear in momenta exists i f  and only i f  one can transform the 
space with the metric 

ds 2 = aik dq i dq g (87) 

in such a way that one of the variables vanishes from the coefficients 
(Cerruti, 1907). 

Moreover, if the motion of the system with the potential V and kinetic 
energy form T = �89 leads to geodesics in a Liouville space having the 
metric 

ds 2 = [u,(q,) + - . .  + Un(qn)](dq~ + ' ' "  + dq 2) (88) 

then the problem is equivalent to that of motion of a free particle with the 
kinetic energy of form T = �89 where aik = U6ik, U = ~,7= 1 ui(q~). In 
turn, from the Levy theorem it follows that in such a case, vanishing of one 
of  the variables in the coefficients A~k is a necessary and sufficient condition 
for the existence o f  first integrals linear in momenta. In the case of the 
Liouville surface this means that 

or  

ds ~ = U(u)(du 2 + ,iv 2) 

ds 2 = V(v)(du ~ + dv ~) 

modulo coordinate transformation. 
Since any-surface with a rotational symmetry 

r = {go(8) cos(u), ~o(8) sin(u), ~,69)} 

is equipped with the metric 

d~ 2 = go2(~9) du 2 + {g0'2(,9) + ~b'2(~q)} dO 2 

(89) 

(90) 

(91) 

(92) 
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the Liouville space is a surface with a rotation symmetry. To show this, it 
is enough to make the transformation 

dg = ~~ + ~,2(~) d~9 (93) 
~02(0) 

Let us now consider a surface with a rotation symmetry which is 
embedded in the Euclidean space with coordinates (x, y, z). Let the surface 
be generated by a rotation, by angle O, of a function y = f (x )  around the 
x axis, i.e., 

(x, 6)) -* (x , f (x )  cos 6),f(x) sin 6)) (94) 

The basis vectors E1 = $/~x, E2 = ~/~6) on this surface are 

El(x, 6)) = (1 , f ' (x)  cos 6) ,f ' (x)  sin 6)) 
(95) 

E2(x, 6)) = (0, - - f  '(x) sin 6) , f ' (x)  cos 6)) 

and consequently the components of the metric assume the form 

g l l  (X, 6 ) )  = 1 + [f'(x)]2, g12 = g21 = 0,  g22 = f 2 ( x )  (96) 

KVs are solutions of the Killing equations 

s = 0 (97) 

where s162 is a Lie derivative in a direction ~ (in our case ~ = E2). 
Let us consider a tangent vector to the geodesic u = u ~E1 + u2E2 �9 Since 

along the geodesic ~ ' u  = const =~ u2= const, the second component of 
the tangent vector is a constant of motion, i.e., 

U 2 - -  - -  const & 

In other words, 6) is a cyclic variable. The metric of this surface is the one 
of the surface with a rotation symmetry 

ds 2 = {1 + [f'(x)12}(dx) 2 + f2(x)(dr))2 

= f2(x)I(dr))2 + l + [f'(x)]2 ) (98) 

By transformation to a new variable 

d:~ = 1 + [f '(x)] 2 dx 
f2(x) 

the above metric changes into a particular form of the metric of the 
Liouville surface. 
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5. SOME PROPERTIES OF THE ENSEMBLE OF 
MULTIDIMENSIONAL WORLD MODELS 

The method elaborated in the previous sections turns out to be a 
suitable tool to investigate some global properties of the space of solutions 
o f  Einstein's equations. In such an approach the problem reduces to the 
analysis of geodesics on a Riemannian space with the metric 

where 

and 

ds 2 = 2 W ( d ~  2 - d~ 2) 

V(q~) 1 1)] 1/2 4 } 2 W = - ~/~ exp{ --[2/n(n - 

(99) 

(100) 

where 

f ( s )  = \ d s  ] dt  2 

If  we p u t x  ~ = v , x  2 = w , s = u ,  then 

d2xl  dEx2 d2w 

ds 2 = O; ds-- T = ds--y ; 

dx, 2 dw 
ds - du (105) 

(104) 

�9 daxi+ds 2 r~.k[x(s)] dxJ dXkds d s - f ( s ) - ~ s d X i  (103) 

I(  'J21 V(~) =/~ exp - 2  in - 1)(~-+n - 1)] ~ 

-5 :-i~) 
(the natural system of units is chosen in which ~ = 1). 

The above metric is a special case of the metric of the Liouville surface 
(which is conformally fiat) 

ds 2 = [A(u) + B(w)](du 2 - dw 2) (102) 

where, in the conformal factor, dependences are separated of both vari- 
ables, i.e., of the field variable ~b = u and of the dynamical variable 

oc In R, where R is a scale factor of the physical space. 
Let us notice that (as was shown above) the considered class of the 

systems is equivalent to the classical cosmology with the scalar field ~ and 
a potential V(q~). 

The geodesic equation, after changing to a new parameter t = t(s) [or 
s = s(t)], has the form 
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and 

d2w 2 dw (~sw)2 = f(u) -d~-s (106) T u  ~ + r .  [u, w(u)] + 2r~du, w(u)] ~uu + r~du, w(u)] dw 

Therefore, the geodesic equation assumes the form 

a2Wau ~ + r~ l [ . ,  ~(u)] + { 2 r ~  - r , , I  ~ + { r ~  - 2rl~}.____. - r ~ u )  = 0 

(107) 

where 

1 dA 
r'l~ = F~2 = F~2 = - -  

2[.4 + B] du 

1 dB rl~ = r~, = r~ - - -  

2[A + B] dw 

After standard manipulations one obtains 

dI(dw)2 ] dn dh(dw~ 2 dgfdw'~ 2 dh(dw~ 4 
tA+81  = du du \du] +TuWu] (108) 

By multiplying it by du (du) 4, one has 

[A + B] du 2 d[(dw) z] = - d B  d u  4 - -  d A  du  2 d w  2 .-~ d O  d u  2 d w  2 .Jff dA d w  4 

- [au2- -dw2l[dB  (du)2+dA (dw) 2] (109) 

Let P =- B du 2 + A dw 2, Q = dw z - du z. In such a case one can demonstrate 
that P dQ = Q dP, i.e., 

duZ dw z j 0 (110) 

After elementary transformations we obtain the following solution of the 
deviation equation: 

du 2 dw 2 
- [ A ( u )  -t- a]  = -t- [ B ( w )  - -  a]  ( 1 1 1 )  

o r  

du dw 
{ --[A(u) + a]} '/2 + {[B(w) -- a]} '/2 = 0 (112) 

where A ( v ) +  a < 0 and B ( w ) -  a > 0. In principle, this result could be 
guessed from the classical Liouville metric by substituting d w 2 ~ - d w  2. 
The obtained integral demonstrates the full integrability of the system. We 
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meet here a case analogous to that of classical Liouville systems, for which 
integrability is a consequence of the existence of KT algebra of the second 
rank. Of course, u = ~b, w = 4, and 

A(u) = V(~), B(w) = B ( 4 )  

In general, w = w(q~, 4) is a three-parameter function depending on the 
cosmological constant/X,, on the constant curvature R of the internal space, 
and on the constant curvature /~ of the physical space. The function 
W(qb, 4) is constructed out of functions of the type 

where a > 0 and 8 > 0 in such a way that if any two arbitrary parameters 
vanish, the Ricci scalar of the corresponding space (to which the ensemble 
is reduced) vanishes, too. To see this, it is enough to notice that the 
transformation of the variables 

q~ = - ~  e ~* cosh(fl~b) 
/ . ,  

(113) / E .  
= ~-~ e p* sinh(/~b) 

changes the metric (102) into the Minkowski metric 

as2 = a ~ 2  - a ~  2 (114) 

i f  the internal space is Ricci flat, R = 0 (i.e., if it is a torus), then the 
signature of the Ricci scalar is equal to sign(/~/~). In the case of • = 0 and 
n = 0 (the physical space is three-dimensional), the sign of the Ricci scalar 
is independent of the field ~b and is equal to s ign(R)=-s ign(R/~) .  
Analogously, if R = 0 (the physical space is Ricci flat), then s ign(R)= 
sign(RA). 

If  in the metric (102) one of the functions A(u) ,  B ( w )  vanishes, i.e., if 
/~ = /~  = 0 or R = 0, then the surface on which this metric can be realized 
is a surface of a rotational symmetry which originates from the rotation of 
the function x =f(q~), around q~ axis, in a fiat pseudo-Riemannian space 
with the metric 

ds2 = dc~2 - dx2  - dy  2 (115) 

Let us considei" a surface with a rotational symmetry 

(q~, 4) ~ (q~,f(q~) cos 4,f(t~) sin 4) (116) 

We have 

ds  2 -- {1 - [f,(~)]2} d~2 _ f2 ( ~ )  d42 (117) 
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where prime denotes differentiation with respect to q~. After changing to a 
new variable q~ defined through 

Y! f  '(dP)]2 ~'/2 d~ (118) 
dq~ = [ f2(~) j 

we obtain 

ds 2 = F2(q~)[dq~ z - dCZ] 2 (119) 

Hamiltonian systems which can be reduced to a space with the metric 
(114) admit Killing fields generating a first integral linear in momenta. 
Levine (1936, 1939) formulated conditions for the conformal factor 
S: g,.j = $2~/o [i.e., S = (2W) 1/2] for which KVs exist. Having the above in 
mind, we can fully describe the class of Hamiltonian dynamical systems of 
the gravity theory for which first integrals quadratic in momenta exist (the 
characteristic feature of this class is that their quadratic form of kinetic 
energy is indefinite). 

6. CONCLUSIONS 

We have investigated the problem of the geometrization of the dynam- 
ics of homogeneous multidimensional cosmological models by reducing the 
class of these models to Hamiltonian geodesic flows. As is well known, the 
local instability of geodesic flows on compact and zero-energy surfaces (in 
general constant-energy surfaces) leads to ergodicity. In our case, surfaces 
of constant energy are not compact. It turns out that the local stability of 
a geodesic flow is determined by the sign of the sectional curvature of the 
reduced space (of the Gaussian curvature in our case). This follows from 
the geodesic deviation equation for the perpendicular component of the 
geodesic separation vector (Szydtowski and Lapeta, 1991). If the Ricci 
scalar is negative, nearby geodesics diverge, in average exhibiting the local 
instability provided/~/~ > 0 if • = 0. Let us suppose that nearby geodesic 
converge in average; in such a case one can say that if a certain geodesic, 
corresponding to a given trajectory of the Hamiltonian system, exhibits a 
certain property, then a nearby geodesic will exhibit the same property. For 
instance, if a multidimensional world model admits inflation as a dynamical 
effect of extra dimensions (Szydtowski et al., 1993), the inflation is typical 
if/~/~ < 0, i.e.,- if the physical space is of a negative curvature. For such a 
class of world models, one has an interesting property of passing through 
an infinite series of inflationary epochs. In general, based on the geodesic 
deviation equation one can discuss Lyapunov stability of certain properties 
of world models. This idea has been developed in the present work. Our 
main results are the following: 
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1. The dynamics of cosmological models has been translated into 
purely geometric language. 

2. It turns out that Killing vectors and Killing tensors are important 
in determining additional first integrals (besides the energy integral). 

3. The proof  of  the integrability has been offered of the Hamiltonian 
dynamical systems of a multidimensional cosmology by integrating 
the corresponding geodesic deviation equation. 

4. Classical Liouville systems have been generalized to the case of 
generally relativistic systems, the energy form of which is indetermi- 
nate. It turns out that the integrability of  such systems follows from 
the existence of the Killing tensor algebra leading to integrals of 
second order in momenta. 

5. The problem of the existence of  first integrals linear in momenta has 
been formulated in terms of  Killing vectors of  the isometry group. 

We believe that our main result can be expressed as a proposal that 
instead of  investigating Hamiltonian flows one should study the behavior 
of geodesics in a certain model of Hamiltonian systems obtained with the 
help of  the Mauper tu i s -Jacob i -Hami l ton  principle. In this model the 
integrability of  a system manifests itself in the symmetries of  the model, 
and the nonintegrability of  a system in the lack of symmetries. 
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